Vision-Based Articulated Machine Pose Estimation for Excavation Monitoring and Guidance
نویسندگان
چکیده
The pose of an articulated machine includes the position and orientation of not only the machine base (e.g., tracks or wheels), but also each of its major articulated components (e.g., stick and bucket). The ability to automatically estimate this pose is a crucial component of technical innovations aimed at improving both safety and productivity in many construction tasks. A computer vision based solution using a network of cameras and markers is proposed in this research to enable such a capability for articulated machines. Firstly, a planar marker is magnetically mounted on the end-effector of interest. Another marker is fixed on the jobsite whose 3D pose is pre-surveyed in a project coordinate frame. Then a cluster of at least two cameras respectively observing and tracking the two markers simultaneously forms a camera-marker network and transfers the end-effector's pose into the desired project frame, based on a pre-calibration of the relative poses between each pair of cameras. Through extensive sets of uncertainty analyses and field experiments, this approach is shown to be able to achieve centimeter level depth tracking accuracy within up to 15 meters with only two ordinary cameras (1.1 megapixel each) and a few markers, providing a flexible and cost-efficient alternative to other commercial products that use infrastructure dependent sensors like GPS. A working prototype has been tested on several active construction sites with positive feedback from excavator operators confirming the solution's effectiveness.
منابع مشابه
Articulated Hand Pose Estimation Review
With the increase number of companies focusing on commercializing Augmented Reality (AR), Virtual Reality (VR) and wearable devices, the need for a hand based input mechanism is becoming essential in order to make the experience natural, seamless and immersive. Hand pose estimation has progressed drastically in recent years due to the introduction of commodity depth cameras. Hand pose estimatio...
متن کاملArticulated Object Tracking from Visual Sensory Data for Robotic Manipulation
In order for a robot to manipulate an articulated object, it needs to know its state (i.e. its pose); that is to say: where and in which configuration it is. The result of the object’s state estimation is to be provided as a feedback to the control to compute appropriate robot motion and achieve the desired manipulation outcome. This is the main topic of this thesis, where articulated object st...
متن کاملContinuous - state Graphical Models for Object Localization , Pose Estimation and Tracking
of “Continuous-state Graphical Models for Object Localization, Pose Estimation and Tracking” by Leonid Sigal, Ph.D., Brown University, May 2008. Reasoning about pose and motion of objects, based on images or video, is an important task for many machine vision applications. Estimating the pose of articulated objects such as people and animals is particularly challenging due to the complexity of ...
متن کاملShape Models of the Human Body for Distributed Inference
of “Shape Models of the Human Body for Distributed Inference” by Silvia Zuffi, Ph.D., Brown University, May 2015 In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can b...
متن کاملLearning to parse images of articulated bodies
We consider the machine vision task of pose estimation from static images, specifically for the case of articulated objects. This problem is hard because of the large number of degrees of freedom to be estimated. Following a established line of research, pose estimation is framed as inference in a probabilistic model. In our experience however, the success of many approaches often lie in the po...
متن کامل